Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Magneto-optical study of the colossal magneto-resistance pyrochlore $Tl_2Mn_2O_7$

- H. Okamura¹, T. Koretsune¹, M. Matsunami¹, S. Kimura¹, T. Nanba¹, H. Imai², Y. Shimakawa², Y. Kubo²
- ¹ Physics Department, Kobe University, Kobe 657-8501, Japan
- ² Fundamental Research Labs, NEC Corporation, Tsukuba 305-8501, Japan

Pyrochlore Mn compound $Tl_2Mn_2O_7$ has been found* to exhibit a colossal magnetoresistance (CMR) that is comparable to those for the perovskie manganites such as $La_{1-x}Sr_xMnO_3$. The CMR mechanism in $Tl_2Mn_2O_7$ is very interesting, in particular because it is believed to be quite different from that for the perovskites.* In order to probe the microscopic electronic structures of $Tl_2Mn_2O_7$, we have measured its optical conductivity $[\sigma(\omega)]$ in wide ranges of photon energy, temperature (T), and external magnetic field (B) to 6 T. $\sigma(\omega)$ below ~ 0.2 eV has shown large increases on cooling through the Curie temperature T_c =120 K, and also on applying magnetic fields near and slightly above T_c . These spectral evolutions indicate that the electronic structures near the Fermi level become metallic in the ferromagnetic (FM) phase, either by lowering T or by applying external B. We have also observed a pronounced magnetic circular dichroism in the FM phase, near the plasma resonance at ~ 0.15 eV. We will analyze and discuss these results in terms of the electronic structures of $Tl_2Mn_2O_7$, emphasizing different characters from those for the perovskites.

^{*}Y. Shimakawa *et al.*, Nature **379**, 53 (1996); M.A. Subramanian *et al.*, Science **273**, 81 (1996); S.-W. Cheong *et al.*, Solid State Commun. **98**, 163 (1996).